
The Complexity of Deterministic Source

Encoding with a Fidelity Criterion*

by

John E. Savage

May, 1971

*This work was supported by NASA Grants NGR 40-002-082, NGR 40-002-090
and NSF Grant GK-13162.



The Complexity of Deterministic Source Encoding

with a Fidelity Critereon

by

John E. Savage

Center for Computer and Information Sciences
and

Division of Engineering

Brown University
Providence, Rhode Island 02912

U.S.A.

Abstract

This paper deals with the block encoding of discrete, memoryless

sources with equiprobable outputs subject to a fidelity critereon. The

encoder is assumed to be deterministic and a lower bound is derived on

the amount of computational work required to encode such sources as a

function of the code rate and fidelity of the encoding. An example is

given to show that the bound cannot be substantially improved. These

bounds apply primarily to sources and distortion measures which are such

that the minimum distortion given by the rate-distortion bound is not

achievable with a finite block length, deterministic encoder.



1. Introduction

Codes are used both for the encoding of sources with a fidelity

criterion and for error-correction. In the case of error-correction,

decoders are usually far more complex than encoders while in the source

encoding case the reverse is true. This difference exists because source

encoders which represent source outputs with some distortion and at re-

duced code rate require a many-to-one map from source sequences to code

words, and this map is potentially much more complex than the one-to-one

map realized by encoders for error-correcting codes. The objective of

this paper is to shed light on the source encoding problem by introducing

to it the complexity measure called "computational work" which has been

2
successfully applied to the decoding problem.

In this section we define "computational work," the source encoding

problem and introduce models for encoding machines. In Section 2 a lower

bound to the computational work required to source encode a discrete, memory-

less source (DMS) is derived and a high rate encoder for a binary source

is exhibited which encodes with a work near the minimum. In the concluding

section the problems associated with the use of decoders for error-correc-

ting codes as source encoders are discussed.

Let the source produce N digits from a source alphabet Z , namely,

the vector z = (Zl ..,zN ) . The source encoder maps z into y = (lyN)N :"

where Yi C Y , a second alphabet. In general, the map from z to y is

many-to-one and as a result some distortion in the representation of z is

introduced. We measure this distortion with a function d(.,) which
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we assume has the following properties: . - -

0 < d(z,y) <'X z c Z, y C.Y
(1)

d(z,y(z)) = 0 some y(z) c Y

Then, the distortion between z and , d(z', ) is defined by

N
1

d(z~,) = z d(z
i
, yi ) (2)

. i=l

The map from z to y could be stochastic since y could be the output

of a noisy channel when z is the input.

1
Shannon has shown for the DMS that the minimum average distortion D

and the source rate R must satisfy the inequality

R < R(D) (3)

where R(D) is a rate-distortion function defined in terms of the distortion

measure d(,) . Since Shannon's encoders could contain a stochastic element,

4
it is surprising that (as Goblick has shown) the same results hold when the

5.
map from z to y is deterministic. Pilc has derived bounds on the rate

of approach to the PR(D) bound as a function of encoding length N and

finds that stochastic encoders offer a small advantage over deterministic

encoders.

The analysis that we shall do is limited by technical considerations

to deterministic source encoders; Therefore, we limit our attention to such

encoders which can now be defined by a many-to-one function f:Z
N

- yN

-N -N
where if zEZ and ycY then

y= f(z) (4)

4 5
Following Goblick and Pilc , if there are M encoder outputs y , the

encoder rate R is defined by

log
2

M (5)RI N

*Pinkston3 has shown that there is no loss of generality in these assumptions.



-3-

The source outputs are assumed to be statistically-independent and identically

distributed according to the distribution {Q (i) , 1 < i < IZl} .

Suppose that f has £ inputs which are equal to outputs and let these

inputs be Zl, z2 , -- , zz. Form nf by wf(zl ' -- ZN) = (Y(1) ' Yw(N)

where X. is a permutation of {1, 2, --, N} and f(zl, -- ZN) = (Y1' --' YN)

Let P be the set of permutations such that if iEP, y( 1 ) = Z1 ' --' YT(Y) = z .

Then, we define the average distortion D associated with f by

D i= E{d(z, rf(z))} (6)

where the expectation is taken over the source ensemble. While this definition

is slightly different from that commonly used, the rate-distortion function

still applies.

N N
The complexity of an encoding function f: Z Y will now be defined.

Let h: Z + {O, 1 }m be a 1-1 into map of the set Z and let z: Y {O, Ln

be a 1-1 into map of Y . Then, f: 11] , obtained fromf*: [{0, 1)D I [{0, Jotandfo

f by composition with functions h and k , is a binary representation of f:.

Given a binary function g: {O, 1}p + {(0, l}g we say that g is com-

puted by a combinational machine (a directed, acyclic graph) with primitives

Q (set of Boolean functions) if such a machine accepts as inputs the variables

of g and produces the value of g at specified points in the machine.

The primitives Q2 are the basic set of operations permissible and might con-

sist of the 2-input AND, the 2-input OR and the NOT functions, for example.

If no element of Q2 has more than r inputs, Q2 is said to have fan-in

of r . The combinational complexity of g , C (g) , is the smallest number

of primitives in any combinational machine realizing g . We extend the

definition to non-binary encoding functions f by defining C (f) as the

*Each occurence of z and y may have a different encoding function h or Z.
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-t
minimum of C (f*) over all encodings of z and y.

A sequential machine S = < S, I, 6, A, 0; T > has a finite state

set S , input alphabet I and output alphabet 0 . It executes T cycles

and has state transition function 6: SXI - S and output function A: S + 0

Then, C *(S) is defined as the combinational complexity of 6, X subject

to the restriction that each occurence of the set S be given the same en-

(n) n-i U)
coding. S is said to compute A( ): S x I 0 as defined by: A = A
6(1) (n) n
6( 6) ,6 ( n ) S x -+ S

(n) ~~~~~~(n-i)
6()(s;-Y, Y2, -- , Yn) = 6(6(n (s; Y1, -- , Yn-1)

'

Yn)

(7)

A(n) (;n- (6(n-i)
1(n)(s; Yl -'- Y n1) - t(6( ) (s; Y' --' Yn ) )

(1) (t)
Then, if C(A( ) --, A( )) is the combinational complexity of the functions

2,6
computed by S then it is easily shown that,

C9 ( 2)( - ) C (2 ) -- T (8)

N N
Theorem 1 Let f: Z - Y be computed by S = <S, I, 6, A, O; T> .

Then,

C(f) .< C ;(S) T (9)
~~~(9)

If f is computed by S then C(f) < C((), (, (
T
) ) and the

inequality follows. This theorem can be extended to a collection of inter-

connected sequential machines which compute f

We call W = C '(S) T the computational work performed by S because

it is the equivalent number of logical operations which S executes. Further-

more, it can be shown that C Q*(S) is proportional to the storage capacity

.. Each occurence of Z and Y may have a different encoding function.'Each occurence of Z and Y may have a different encoding function.
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of S when S consists of a machine with a large amount of random access

or tape storage. The theorem then states that a source encoding with f

is possible only if an amount of computational work at least as large as

C (f) is completed. We show in the next section that C (f) must be large

for many sources and distortion measures if the source is to be encoded

at rate R and distortion D near that given by the rate distortion function.

2. Bounds on Computational Work.

We now develop a lower bound to C (f) . Let n* be the minimizing

permutation in (6). Then, if f is dependent on N' of its inputs, so is

w*f and

C (f) = C (R*f) > N -
-- r

(10)

where r is the fan-in of D . This follows because (1) no output is equal

to two inputs (outputs can only be connected together through logic elements)

(2) if-some input variable of f is equal to an output variable, this input

is one of the Z inputs and (3) the N'- Z remaining inputs are encoded

into binary variables and f'* must depend on at least one of the binary variables

for each of the inputs to f . These binary inputs must be applied to a

logic element and each logic element has at most r inputs. The next step

is to lower bound N' - Z .

N
We observe that the number of points in Z on which f depends, namely,

IZIN , must be at least as large as M, the size of the range of f . There-

fore, 

N' > NR/log2IZI . (11)

Write

z and w

(v, f-(w))
v

z = (v, w) where v represents the first g components of

the remaining N--Q components. Then, T*f(n) can be written as

. Let 11() be the size of the range of f_(g) . Then,
v
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*z Izl
-

M(V) = M/IZlI (12)

Also, if the source is a statistically independent letter source, the

probability p(M) = pv( U)pw() and since d(zi, yi) > 0 we have

D N-E P (V)Ew {d(w, f-(~))} (13)-N w v
V

We call D(V) = Ew{d(E, f-(G))} and if the source outputs are equiprobable,

then pv(V) =.IZ
-
t and

v~~~~

l v, - N-.(14)

In Appendix A it is shown that there exists a v such that

M(v) < 2M/[Z[ (15a)

D(v) S 2 D N (15b)
N-k9

where M(V) and D(v) are the number of code words and average distortion

associated with f-: zN- + yN-.
V

Taking the base 2 logarithm of both sides of (15a) and letting

R(v) = (log2 M(v))/(N-Z) we have

_ < N[1/N + R-RrV)]/[log2 Z - R(V)] (16)

From (15b) and the fact that D(v) > R l(R(v)) we have 
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Z Ž N[l - 2D/R (R(V))] (17)

and combining these two equations we have

[1 - 2D/R-1 (R(V))] [log2 IZI - R(V)] + R(V) < 1/N + R (18)

In Appendix B it is shown that if R(D) has a continuous first derivative

then the left-hand function is decreasing in increasing R(-v) and R(V) > 0

if the following inequality is satisfied:

R < (1 - 2D/D )R - 1/N (19)
max max

where Dmx is the maximum average distortion and R = log2!ZI is the
max max 2

largest possible source rate. The locus (1 -2D/D )R vs D is shown
max max

in Figure 1 along with R(D) for a typical source and distortion measure.

Substituting (11) and (16) into (10) we have the following

Theorem 2 Consider a discrete, memoryless and equiprobable letter source

and let a distortion measure be given which generates the rate-distortion

function R(D) assume that R(D) has-a continuous first derivative. Let

Rmax = log! Z1 be the maximum encoding rate and let Dmax be the maximum
max 2ax

average distortion. If the source is encoded with average distortion D

at rate R by a deterministic encoder realizing a function f: Z
N

- Y ,

then the computational work W which is required satisfies

N
W >- a(R, D, N) (20)

r

where a(R, D, N) > 0 if N > N (R, D) and
0

P(D) < R < (1 - 2D/D )R (21max max (21)
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Also, lim (R, D, N) = (R, D) and 8(R, D) > 0 if (2i) is satisfied.
N-)-

Proof The substitution of (11) and (16) into (10) gives

RN () (R -R) -1/N N
C (f) > L [ . max -) =N (R, D, N) (22)

r . R (R - R()) 
max max

But (18) implies that R(U) > 0 if (14) is satisfied which it is by the

assumption (21) for large N . Therefore, for sufficiently large N',

-(R, D, N) > 0 . Q.E.D.

We now show by example that we cannot improve substantially upon the

bound of (20). Consider a source encoder for a binary, equiprobable, memory-

less letter source which is the minimum distance decoder of a Hamming code.

Every binary sequence z is at Hamming distance at most one from a code

work y . Let the distortion measure by the Hamming metric. Then R(D) = l-H(

where H(D) is the entropy of a binary source with letter probabilities of

D and 1-D, and R = 1, D = 1/2 and (21) becomes R <l-4D . A Hamming
max max

code of block length N has rate R(N) = l-log2 (N+l)/N and the average

distortion using this code and decoder D(N) satisfies

1 NR(N) -N 1
D(N;) = 2 . ((1+1)2 ) = 

N N ~~~~~~~~~(23)

Hence, for N > 15 , the inequality R < 1-4D of (21) is satisfied.

The decoder-of a Hamming code calculates a syndrome and then identifies

the bit presumed to be in error by equating the syndrome with some row of

7
the code parity-check matrix. It has been shown that the decoder does a

work W bounded above by a quantity which approaches 3N2 log2 N when 2-input

primitives are used. Thus, the lower bound of (10) cannot be substantially

improved for large N at large encoding rates.
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We now turn to the further bounding of computational work, for which

5
we make use of bounds derived by Pilc . We assume that the source is dis-

crete and memoryless characterized by the letter probabilities {Pl ... 'PI}

over the source alphabet Z . A distortion measure is given and a rate-

distortion function R(D) is defined in terms of the semi-invariant moment

generating function pI(S, p, g)

I Sd
"(S, p, g) E Pi log2 { Z g. e ij} (24)

L=l j=l 

where {gi, --gj} are probabilities over the encoder output alphabet Y

and {d..} is the set of values assumed by the function. Then, S S is
1J 0

chosen such that

D = min p '(S, p, g) (25)
g

and we have

R(D) =S p'(S p, p go) - p(So, p, go)] (26)
o 0 0 

where go is the minimizing probability vector g . Pilc shows that subject

to an approximation

log2 N
1 _ _

D > D + N [1 + 0(1)] (27)
-R* 21 0 N

where 0(1) decreases to zero with increasing N . The approximation is

explained on page 841 of [5] and has been shown to be unnecessary when the

source is doubly uniform, that is when the source letters are equi-probable

and the matrix {dij, 1 < i < I, 1 < j < J} is such that rows and columns

are permutations of a given row and column and I = J . These conditions

hold for the source and distortion function in the example given above.
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Now solving (29) for large N , that is for D near DR, where

R(D ) = R we have
R N> log2 21S (D - DR)

21S I(D - DR) (28)
0R

where both S and DR are implicit functions of the encoding rate R .
oR

Since Pilc's bounds apply strictly to doubly uniform sources, we restrict

our principal result to this case. It should be noted that Pilc's lower

bounds apply to the distortion measure defined in (6).

Theorem 3 Consider a doubly uniform source with rate-distortion function

R(D) . Let D , and R be the maximum average distortion and maximum
max max ·

encoding rate and define DR by R(DR ) = R . Let the source be encoded
R ~~R

with a deterministic encoder with average distortion D and rate R . Then,

the computational work required to encode the source satisfies

[-lo g2 Isol (D - DR)1 '(R, D) (29)
w log 2- %1 (R- (29)W>

21Soj(D - DR)

for DR < D < DR + c when 0 < E << 1 and =' (R, D) > 0 if R satisfies

(21). Here S = S (R) is the parameter defined by (25) and it is assumed
0 0

to be bounded.

Proof =' (R, D) is the function >(R; D, N) with N replaced by the

bound of (28). Clearly, for D near DR , N is large and Theorem 2 applies.

Q.E.D.

3. Conclusions

The central objective of source encoding with a fidelity critereon is

to find an encoder which provides a distortion near the minimum with a small

computational work. One might expect that decoders for error correcting

codes could be used since they partition their input spaces into disjoint sets,
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as do source encoders. This is an unrealized expectation primarily because

those known decoding procedures which decode long codes of non-zero rates

with a modest computational work also decode "with uncertainty ". That is,

they make no decision on many input words; this is true of "bounded distance"

decoders. Unfortunately, these uncertainty sets occupy nearly all of the

volume of the space of input words so that nearly all inputs result in un-

certainty. This is not a problem for error-correction since the received

sequences are concentrated with high probability outside this set.

In general, it is a problem for source encoders because in this case all

sequences are often equiprobable which means that either no action can be

taken on most source sequences or if the same decision is always made, then,

the average distortion will be very large.

The search for good source encoders with a fidelity critereon goes

on.- There is some comfort in the fact that success here is likely to

materially aid in the quest for error-correcting decoders which decode with

small computational work.
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Appendix A

Lemma Let A(i), B(i) > 0 , 1 < i < T and let

I
Z A(i)
i=l

T
< A , E B(i) < B

' i=l

- Then, there exists i = i such that
o

A(i) < 2A , B(i ) < 2B

Proof Let N be the number of integers i :-such that A(i) > 2A
a

and N the number of integers i such that of B(i) > 2B . Then,
b

Ii
Z -A(i) > N 2A

i=l T a-a

and N < T/2 .
a

that A(i) > 2A

fore, the number

bounded below by

theorem applies.

Similarly Nb < T/2 . The number of integers i such

or B(i) > 2B is bounded above by -N + Nb < T . There-
a

of integers i such that A(i) < 2A and B(i) < 2B is

T -N - N > 0 and there exists an i to which the
a b o

Q.E.D.
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Appendix B

Lemma Let the rate-distortion function R(D) have a continuous first de-

rivative and let D(R) be the inverse of R(D) . Then, F(R) = (1 - a/D(R))

(R - R) + R is decreasing in increasing R .
max

Proof The derivative of F(R) is

a
F'(R) 2 [(R - R) DI(R) + D(R)]

D (R) max

Since D(R) is convex downward in R and D(R ) = 0 , it follows that

the bracketed term is bounded above by ax Q.E.D.
the bracketed term is bounded above by 0 Q.E.D.
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